If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+56x+15=0
a = 20; b = 56; c = +15;
Δ = b2-4ac
Δ = 562-4·20·15
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-44}{2*20}=\frac{-100}{40} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+44}{2*20}=\frac{-12}{40} =-3/10 $
| 8(r+7)=6+2 | | 7(t+6)=42 | | 2t^-7t=12 | | 6x+20=44 | | 8x-24-3x-6=1 | | 3(x+-1)+-7=15 | | 5x-3+2x=2x-5+7 | | 2x−5=3x−6 | | (6x-1)^2=0 | | (6x-1)^2=9 | | 12.50+5x=62.50 | | 5x-43=x | | f(1)=18 | | 3(n-9)=-30 | | (2x-7)/6-(2x-9)/10=30 | | -4(u+2)(-u-8)=0 | | 8x+5=3x+39 | | 234x-94-108x=63 | | 2/3x-6=1/4x+4 | | (25^x)+5^(1+2x)=40 | | 567x-27-566x+67-37=33 | | 3(4q-3)=2(3q+5 | | 0.14(y-8)+0.06y=0.12y-0.03(30) | | 4n+2-3(2-n)=31 | | 3x^2/4+5x/2-2=0 | | P^2-19p-90=0 | | 6x+-2-5x=13-29 | | -15m-13=68 | | 7x+27=5(x+9) | | 6/5+2/5x=71/30+7/6x+1/6 | | 80.84+(1.25/1)=(x/75)(1.25) | | 7(v+4)=9v+14 |